These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calcitonin gene-related peptide as a regulator of neuronal CaMKII-CREB, microglial p38-NFκB and astroglial ERK-Stat1/3 cascades mediating the development of tolerance to morphine-induced analgesia.
    Author: Wang Z, Ma W, Chabot JG, Quirion R.
    Journal: Pain; 2010 Oct; 151(1):194-205. PubMed ID: 20691540.
    Abstract:
    Tolerance to morphine-induced analgesia is an intractable phenomenon, often hindering its prolonged applications in the clinics. The enhanced pronociceptive actions of spinal pain-related molecules such as calcitonin gene-related peptide (CGRP) may underlie this phenomenon and could be a promising target for intervention. We demonstrate here how CGRP regulates the development of morphine analgesic tolerance at the spinal level. A 7-day treatment with morphine led to tolerance to its analgesic effects and enhanced expression of CGRP and its receptor subunits calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1). Activation of several cell-type-specific kinase transcription factor cascades is required to mediate this tolerance, including calcium/calmodulin-dependent protein kinase II (CaMKII) and cAMP response element-binding protein (CREB) in neurons, p38 and nuclear factor kappa B (NFκB) in microglia and extracellular signal-regulated protein kinase (ERK) and signal transducer and activator of transcription 1 and 3 (Stat1/3) in astrocytes, because inhibitors of CaMKII, p38 and ERK pathways correspondingly reduced the increases in phosphorylated CREB, acetylated-NFκB and phosphorylated Stat1/3 levels and attenuated the development of tolerance. Interestingly, these cascades were linked to the regulation of glutamatergic N-methyl-d-aspartate (NMDA) receptor expression. Chronic morphine-induced behavioural responses and biochemical events were all subjugated to modulation by disrupting CGRP receptor signaling. Together, these data suggest that CGRP contributes to the development of tolerance to morphine-induced analgesia by regulating the activation of the neuronal CaMKII-CREB, microglial p38-NFκB and astroglial ERK-Stat1/3 cascades. Targeting CGRP-associated signaling molecules may prolong or restore morphine's analgesic properties upon a chronic exposure.
    [Abstract] [Full Text] [Related] [New Search]