These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bladder tissue engineering: tissue regeneration and neovascularization of HA-VEGF-incorporated bladder acellular constructs in mouse and porcine animal models. Author: Loai Y, Yeger H, Coz C, Antoon R, Islam SS, Moore K, Farhat WA. Journal: J Biomed Mater Res A; 2010 Sep 15; 94(4):1205-15. PubMed ID: 20694987. Abstract: Successful tissue engineering requires appropriate recellularization and vascularization. Herein, we assessed the regenerative and angiogenic effects of porcine bladder acellular matrix (ACM) incorporated with hyaluronic acid (HA) and vascular endothelial growth factor (VEGF) in mouse and porcine models. Prepared HA-ACMs were rehydrated in different concentrations of VEGF (1, 2, 3, 10, and 50 ng/g ACM). Grafts were implanted in mice peritoneum in situ for 1 week. Angiogenesis was quantified with CD31 and Factor VIII immunostaining using Simple PCI. Selected optimal VEGF concentration that induced maximum vascularization was then used in porcine bladder augmentation model. Implants were left in for 4 and 10 weeks. Three groups of six pigs each were implanted with ACM alone, HA-ACM, and HA-VEGF-ACM. Histological, immunohistochemical (Uroplakin III, alpha-SMA, Factor VIII), and immunofluorescence (CD31) analysis were performed to assess graft regenerative capacity and angiogenesis. In mouse model, statistically significant increase in microvascular density was demonstrated in the 2 ng/g ACM group. When this concentration was used in porcine model, recellularization increased significantly from weeks 4 to 10 in HA-VEGF-ACM, with progressive decrease in fibrosis. Significantly increased vascularization, coupled with increased urothelium and smooth muscle cell (SMC) regeneration, was observed in HA-VEGF grafts at week 10 in the center and periphery, compared with week 4. HA-VEGF grafts displayed highest in vivo epithelialization, neovascularization, and SMCs regeneration. A total of 2 ng/g tissue VEGF when incorporated with HA proved effective in stimulating robust graft recellularization and vascularization, coordinated with increased urothelial bladder development and SMC augmentation into bundles by week 10.[Abstract] [Full Text] [Related] [New Search]