These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dysfunctional Nrf2-Keap1 redox signaling in skeletal muscle of the sedentary old. Author: Safdar A, deBeer J, Tarnopolsky MA. Journal: Free Radic Biol Med; 2010 Nov 30; 49(10):1487-93. PubMed ID: 20708680. Abstract: The role of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) redox signaling has not been characterized in human skeletal muscle despite an extensive delineation of oxidative stress in the etiology of aging and sarcopenia. We assessed whether the age-associated decline in antioxidant response is due, at least in part, to dysfunction in Nrf2-Keap1 redox signaling. We also evaluated whether an active lifestyle can conserve skeletal muscle cellular redox status via activation of Nrf2-Keap1 signaling. Here we show that a recreationally active lifestyle is associated with the activation of upstream modulators that induce the Nrf2-mediated antioxidant response cascade in skeletal muscle of the elderly. Conversely, a sedentary lifestyle is negatively associated with these adaptations mainly because of dysregulation of Nrf2-Keap1 redox signaling that renders the intracellular environment prone to reactive oxygen species-mediated toxicity. Our results indicate that an active lifestyle is an important determinant of cellular redox status. We propose that the metabolic induction of Nrf2-Keap1 redox signaling promises to be a viable therapy for attenuating oxidative stress-mediated damage in skeletal muscle associated with physical inactivity.[Abstract] [Full Text] [Related] [New Search]