These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pharmacological targeting of constitutively active truncated androgen receptor by nigericin and suppression of hormone-refractory prostate cancer cell growth.
    Author: Mashima T, Okabe S, Seimiya H.
    Journal: Mol Pharmacol; 2010 Nov; 78(5):846-54. PubMed ID: 20709811.
    Abstract:
    In prostate cancer, blockade of androgen receptor (AR) signaling confers a therapeutic benefit. Nevertheless, this standard therapy allows relapse of hormone-refractory prostate cancer (HRPC) with a poor prognosis. HRPC cells often express variant ARs, such as point-mutated alleles and splicing isoforms, resulting in androgen-independent cell growth and resistance to antiandrogen (e.g., flutamide). However, a pharmacological strategy to block such aberrant ARs remains to be established. Here, we established a reporter system that monitors AR-mediated activation of a prostate-specific antigen (PSA) promoter. Our chemical library screening revealed that the antibiotic nigericin inhibits AR-mediated activation of the PSA promoter and PSA production in prostate cancer cells. Nigericin suppressed the androgen-dependent LNCaP cell growth even though the cells expressed a flutamide-resistant mutant AR. These effects were caused by AR suppression at the mRNA and post-translational levels. In HRPC 22Rv1 cells, which express the full-length AR and the constitutively active, truncated ARs lacking the carboxyl-terminal ligand-binding domain, small interfering RNA-mediated knockdown of both AR isoforms efficiently suppressed the androgen-independent cell growth, whereas knockdown of the full-length AR alone had no significant effect. It is noteworthy that nigericin was able to mimic the knockdown of both AR isoforms: it reduced the expression of the full-length and the truncated ARs, and it induced G(1) cell-cycle arrest and apoptosis of 22Rv1 cells. These observations suggest that nigericin-like compounds that suppress AR expression at the mRNA level could be applied as new-type therapeutic agents that inhibit a broad spectrum of AR variants in HRPC.
    [Abstract] [Full Text] [Related] [New Search]