These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nonmuscle myosin IIA with a GFP fused to the N-terminus of the regulatory light chain is regulated normally.
    Author: Kengyel A, Wolf WA, Chisholm RL, Sellers JR.
    Journal: J Muscle Res Cell Motil; 2010 Sep; 31(3):163-70. PubMed ID: 20711642.
    Abstract:
    Nonmuscle myosin II plays a crucial role in a variety of cellular processes (e.g., polarity formation, cell motility, and cytokinesis). It is composed of two heavy chains, two regulatory light chains and two essential light chains. The ATPase activity of the myosin II motor domain is regulated through phosphorylation of the regulatory light chain (RLC) by myosin light chain kinase. To study myosin function and localization in cellular processes, GFP-fused RLCs are widely used; however, the exact kinetic properties of myosins with bound GFP-RLC are poorly described. More importantly, it has not been shown that a regulatory light chain fused at its N-terminus with GFP can maintain the normal phosphorylation-dependent regulation of nonmuscle myosin or serve as a substrate for myosin light chain kinase. We coexpressed N-terminal GFP-RLC with a heavy meromyosin (HMM)-like fragment of nonmuscle myosin IIA and essential light chain to characterize the phosphorylation dynamics and in vitro kinetic properties of the resulting HMM. Myosin light chain kinase phosphorylates the GFP-RLC bound to HMM IIA with the same V(max) as it does the wild type RLC bound to HMM IIA, but the K(m) is about two fold higher for the GFP fusion protein, meaning that it is a somewhat poorer substrate. The steady-state actin-activated MgATPase activity of the GFP-RLC HMM is very low in the absence of phosphorylation demonstrating that the GFP moiety does not prevent formation of the off state. The actin-activated MgATPase activity of phosphorylated GFP-RLC-HMM and is about half that of wild type phosphorylated HMM. The ability of phosphorylated GFP-RLC-HMM to move actin filaments in the actin gliding assay is also slightly compromised. These data indicate that despite some kinetic differences the N-terminal GFP fusion to the regulatory light chain is a reasonable model system for studying myosin function in vivo.
    [Abstract] [Full Text] [Related] [New Search]