These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The influence of polymer concentration, applied voltage, modulation depth and pulse frequency on DNA separation by pulsed field CE. Author: Li Z, Dou X, Ni Y, Sumitomo K, Yamaguchi Y. Journal: J Sep Sci; 2010 Sep; 33(17-18):2811-7. PubMed ID: 20715140. Abstract: DNA fragments (0.1-10 kbp (kbp, kilo base pair)) separation by square-wave pulsed field CE in hydroxyethylcellulose (HEC, 1300 K) polymer was performed in this work. The effects of polymer concentration, pulse field strength, pulse frequency and modulation depth were investigated. We found that low HEC (about 0.1%) concentration is suitable for the separation of small DNA fragments (<1 kbp), whereas higher HEC concentration (>0.5%) is appropriated for high-mass DNA molecular (>1 kbp) separation. The mobility of DNA fragments is nearly linearly related to average separation voltage under pulsed field conditions. Higher modulation depth is suited to separate the longer DNA fragments and lower modulation depth favors the resolution of short DNA fragments. Thus, the intermediate modulation depth (100%) and pulse frequency (about 31.3 Hz) are prerequisite for high-resolution DNA separation.[Abstract] [Full Text] [Related] [New Search]