These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of mycobacterial replication by pyrimidines possessing various C-5 functionalities and related 2'-deoxynucleoside analogues using in vitro and in vivo models. Author: Srivastav NC, Rai D, Tse C, Agrawal B, Kunimoto DY, Kumar R. Journal: J Med Chem; 2010 Aug 26; 53(16):6180-7. PubMed ID: 20718497. Abstract: Tuberculosis (TB) has become an increasing problem since the emergence of human immunodeficiency virus and increasing appearance of drug-resistant strains. There is an urgent need to advance our knowledge and discover a new class of agents that are distinct than current therapies. Antimycobacterial activities of several 5-alkyl, 5-alkynyl, furanopyrimidines and related 2'-deoxynucleosides were investigated against Mycobacterium tuberculosis. Compounds with 5-arylalkynyl substituents (23-26, 33, 35) displayed potent in vitro antitubercular activity against Mycobacterium bovis and Mycobacterium tuberculosis. The in vivo activity of 5-(2-pyridylethynyl)-uracil (26) and its 2'-deoxycytidine analogue, 5-(2-pyridylethynyl)-2'-deoxycytidine (35), was assessed in BALB/c mice infected with M. tuberculosis (H37Ra). Both compounds 26 and 35 given at a dose of 50 mg/kg for 5 weeks showed promising in vivo efficacy in a mouse model, with the 2'-deoxycytidine derivative being more effective than the uracil analogue and a reference drug d-cycloserine. These data indicated that there is a significant potential in this class of compounds.[Abstract] [Full Text] [Related] [New Search]