These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differential capacitance of the double layer at the electrode/ionic liquids interface. Author: Lockett V, Horne M, Sedev R, Rodopoulos T, Ralston J. Journal: Phys Chem Chem Phys; 2010 Oct 21; 12(39):12499-512. PubMed ID: 20721389. Abstract: The differential capacitance of the electrical double layer at glassy carbon, platinum and gold electrodes immersed in various ionic liquids was measured using impedance spectroscopy. We discuss the influence of temperature, the composition of the ionic liquids and the electrode material on the differential capacitance/potential curves. For different systems these curves have various overall shapes, but all include several extremes and a common minimum near the open circuit potential. We attribute this minimum to the potential of zero charge (PZC). Significantly, the differential capacitance generally decreases if the applied potential is large and moving away from the PZC. This is attributed to lattice saturation [A. A. Kornyshev, J. Phys. Chem. B, 2007, 111, 5545] effects which result in a thicker double layer. The differential capacitance of the double layer grows and specific adsorption diminishes with increasing temperature. Specific adsorption of both cations and anions influences the shapes of curves close to the PZC. The general shape of differential capacitance/potential does not depend strongly on the identity of the electrode material.[Abstract] [Full Text] [Related] [New Search]