These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel candidate disease genes prioritization method based on module partition and rank fusion. Author: Chen X, Yan GY, Liao XP. Journal: OMICS; 2010 Aug; 14(4):337-56. PubMed ID: 20726795. Abstract: Identifying disease genes is very important not only for better understanding of gene function and biological process but also for human medical improvement. Many computational methods have been proposed based on the similarity between all known disease genes (seed genes) and candidate genes in the entire gene interaction network. Under the hypothesis that potential disease-related genes should be near the seed genes in the network and only the seed genes that are located in the same module with the candidate genes will contribute to disease genes prediction, three modularized candidate disease gene prioritization algorithms (MCDGPAs) are proposed to identify disease-related genes. MCDGPA is divided into three steps: module partition, genes prioritization in each disease-associated module, and rank fusion for the global ranking. When applied to the prostate cancer and breast cancer network, MCDGPA significantly improves previous algorithms in terms of cross-validation and disease-related genes prediction. In addition, the improvement is robust to the selection of gene prioritization methods when implementing prioritization in each disease-associated module and module partition algorithms when implementing network partition. In this sense MCDGPA is a general framework that allows integrating many previous gene prioritization methods and improving predictive accuracy.[Abstract] [Full Text] [Related] [New Search]