These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Relationship of heart rate to oxygen uptake during weight lifting exercise.
    Author: Collins MA, Cureton KJ, Hill DW, Ray CA.
    Journal: Med Sci Sports Exerc; 1991 May; 23(5):636-40. PubMed ID: 2072844.
    Abstract:
    To define the relation of heart rate to oxygen uptake during weight lifting (WL), heart rate (HR) and oxygen uptake (VO2) were determined during bouts of WL at four intensities (40, 50, 60, and 70% of one-repetition maximum (1-RM)) in 15 males. The 11.5-min bouts of WL consisted of three circuits using four exercises (bench press, bent-over row, arm curl, and parallel squat), with each performed for ten repetitions over a 30-s period with a 1:1 work/rest ratio. During lifting at the four intensities, mean (+/- SE) VO2 values were 1.31 +/- 0.04, 1.50 +/- 0.07, 1.72 +/- 0.07, and 1.86 +/- 0.08 l.min-1, or 33-47% of treadmill-determined VO2max. Mean (+/- SE) HR values were 124 +/- 4, 134 +/- 4, 148 +/- 5, and 161 +/- 4 beats.min-1, or 63-82% of maximal HR. The slope of the linear regression equation predicting %VO2max from %HRmax (Y = 0.582X - 1.7911, r = 0.86, SEE = 3.4%) was approximately half that reported for dynamic low-resistance exercise such as running or cycling. At a given %HRmax, %VO2max was consistently lower than predicted for dynamic low-resistance exercise. It was concluded that the HR/VO2 relationship during dynamic high-resistance exercise for intensities between 40 and 70% of 1-RM is linear but is different from that reported for dynamic low-resistance exercise. The data are consistent with the conclusion in previous studies that using HR to prescribe the metabolic intensity of WL exercise results in a substantially lower level of aerobic metabolism than during dynamic low-resistance exercise.
    [Abstract] [Full Text] [Related] [New Search]