These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Intercluster compound between a tetrakis{triphenylphosphinegold(I)}oxonium cation and a keggin polyoxometalate (POM): formation during the course of carboxylate elimination of a monomeric triphenylphosphinegold(I) carboxylate in the presence of POMs. Author: Nomiya K, Yoshida T, Sakai Y, Nanba A, Tsuruta S. Journal: Inorg Chem; 2010 Sep 20; 49(18):8247-54. PubMed ID: 20735028. Abstract: The preparation and structural characterization of a novel intercluster compound, [{Au(PPh(3))}(4)(μ(4)-O)](3)[α-PW(12)O(40)](2)·4EtOH (1), constructed between a tetrakis{triphenylphosphinegold(I)}oxonium cation and a saturated α-Keggin polyoxometalate (POM) are described. The tetragold(I) cluster oxonium cation was formed during the course of carboxylate elimination of a monomeric phosphinegold(I) carboxylate complex, i.e., [Au((R,S)-pyrrld)(PPh(3))] [(R,S)-Hpyrrld = (R,S)-2-pyrrolidone-5-carboxylic acid], in the presence of the free acid form of a Keggin POM, H(3)[α-PW(12)O(40)]·7H(2)O. The liquid-liquid diffusion between the upper water/EtOH phase containing the Keggin POM and the lower CH(2)Cl(2) phase containing the monomeric gold(I) complex gave a pure crystalline sample of 1 in good yield (42.1%, 0.242 g scale). Complex 1 was formed by ionic interaction between the tetragold(I) cluster cation and the Keggin POM anion. As a matter of fact, the POM anion in 1 can be exchanged with the BF(4)(-) anion using an anion-exchange resin (Amberlyst A-27) in BF(4)(-) form. By using other Keggin POMs, such as H(4)[α-SiW(12)O(40)]·10H(2)O and H(3)[α-PMo(12)O(40)]·14H(2)O, the same tetragold(I) cluster cation was also formed, i.e., in the forms of [{Au(PPh(3))}(4)(μ(4)-O)](2)[α-SiW(12)O(40)]·2H(2)O (2) and [{Au(PPh(3))}(4)(μ(4)-O)](3)[α-PMo(12)O(40)](2)·3EtOH (3). Compounds 1-3, as dimethyl sulfoxide-soluble, EtOH- and Et(2)O-insoluble dark-yellowish white solids, were characterized by complete elemental analysis, thermogravimetric and differential thermal analyses, Fourier transform IR, X-ray crystallography, and solid-state (CPMAS (31)P and (29)Si) and solution ((31)P{(1)H} and (1)H) NMR spectroscopy. The molecular structures of 1 and 2 were successfully determined. The tetragold(I) cluster cation was composed of four PPh(3)Au(I) units bridged by a central μ(4)-oxygen atom in the geometry of a trigonal pyramid or distorted tetrahedron.[Abstract] [Full Text] [Related] [New Search]