These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adaptation modulates the electrophysiological substrates of perceived facial distortion: support for opponent coding. Author: Burkhardt A, Blaha LM, Jurs BS, Rhodes G, Jeffery L, Wyatte D, DeLong J, Busey T. Journal: Neuropsychologia; 2010 Nov; 48(13):3743-56. PubMed ID: 20736026. Abstract: In two experiments we determined the electrophysiological substrates of figural aftereffects in face adaptation using compressed and expanded faces. In Experiment 1, subjects viewed a series of compressed and expanded faces. Results demonstrated that distortion systematically modulated the peak amplitude of the P250 event-related potential (ERP) component. As the amount of perceived distortion in a face increased, the peak amplitude of the P250 component decreased, regardless of whether the physical distortion was compressive or expansive. This provided an ERP metric of the degree of perceived distortion. In Experiment 2, we examined the effects of adaptation on the P250 amplitude by introducing an adapting stimulus that affected the subject's perception of the distorted test faces as measured through normality judgments. The set of test faces was held constant and the adapting stimulus was systematically varied across experimental days. Adapting to a compressed face made a less compressed test face appear more normal and an expanded test face more distorted as measured by normality ratings. We found that the adaptation conditions that increased the perceived distortion of the distorted test faces also decreased the amplitude of the P250. Likewise, adaptation conditions that decreased the perceived distortion of the distorted test faces also increased the amplitude of the P250. The results demonstrate that perceptual adaptation to compressed or expanded faces affected not only the behavioral normality judgments but also the electrophysiological correlates of face processing in the window of 190-260 ms after stimulus onset.[Abstract] [Full Text] [Related] [New Search]