These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regional differences of substrate oxidation capacity in rat hearts: effects of extra load and endurance training.
    Author: Kainulainen H, Komulainen J, Leinonen A, Rusko H, Vihko V.
    Journal: Basic Res Cardiol; 1990; 85(6):630-9. PubMed ID: 2076098.
    Abstract:
    Male rats, aged 17 weeks at the end of experiments, were divided into four groups. Two groups lived in normal cage conditions with or without extra load (20% of the body weight) and two groups were trained by running with or without extra load for 8 weeks. Oxidation rates of succinate, glutamate + malate, palmitoylcarnitine, and pyruvate, and the activities of lactate dehydrogenase, citrate synthase, isocitrate dehydrogenase and cytochrome oxidase were measured in homogenates of the right ventricle and in those of the subendocardial and subepicardial layers of the left ventricle. Oxidation rates of succinate and palmitoylcarnitine tended to be higher in the subendocardium than in the subepicardium of sedentary control animals (p less than 0.1 and p less than 0.05, respectively). Transmural differences of succinate and palmitoylcarnitine oxidation rates were even more clear after running training (p less than 0.01 and p less than 0.05, respectively), after carrying extra load (p less than 0.001 and p less than 0.001, respectively) and after training carrying extra load (p less than 0.001 and p less than 0.05, respectively). Training also enhanced pyruvate oxidation rate in the subendocardium. Oxidation rates of all substrates were lower in the right ventricle than in the left ventricle. In control animals there were no regional differences in the myocardial enzyme activities and the training- or extra-load-induced changes were modest compared with the changes in the oxidation rates. The most significant change was the training-induced enhancement in the lactate dehydrogenase activity of the subendocardium (p less than 0.001 vs subepicardium). These results show greater subendocardial than subepicardial oxidation rates of certain substrates in the normal heart. These results also suggest that the myocardium adapts to increased work by increasing the subendocardial oxidation rate of some but not all substrates, indicating further that there may be qualitative mitochondrial differences in the different regions of the heart.
    [Abstract] [Full Text] [Related] [New Search]