These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Lyso platelet activating factor (LysoPAF) and its enantiomer. Total synthesis and carbon-13 NMR spectroscopy. Author: Murari MP, Murari R, Parthasarathy S, Guy CA, Kumar VV, Malewicz B, Baumann WJ. Journal: Lipids; 1990 Oct; 25(10):606-12. PubMed ID: 2079867. Abstract: Described is a reaction sequence for the total synthesis of lyso platelet activating factor (lysoPAF; 1-O-alkyl-sn-glycero-3-phosphocholine) and its enantiomer. The procedure is versatile and yields optically pure isomers of defined chain length. The synthesis is equally suited for the preparation of lysoPAF analogues and its enantiomers with unsaturation in the long aliphatic chain. First, rac-1(3)-O-alkylglycerol is prepared by alkylation of rac-isopropylideneglycerol with alkyl methanesulfonate followed by acid-catalyzed removal of the ketal group. The primary hydroxy group of alkylglycerol is then protected by tritylation, the secondary hydroxy group is acylated, and the protective trityl group is removed under mild acidic conditions with boric acid on silicic acid, essentially without acyl migration. Condensation of the diradylglycerol with bromoethyl dichlorophosphate in diethyl ether, hydrolysis of the resulting chloride, and nucleophilic displacement of the bromine with trimethylamine gives rac-1-O-alkyl-2-acylglycero-3-phosphocholine in good overall yield. The racemic alkylacylglycerophosphocholine is finally treated with snake venom phospholipase A2 (Ophiophagus hannah) which affords 1-O-alkyl-sn-glycero-3-phosphocholine (lysoPAF) of natural configuration in optically pure form. The "unnatural" 3-O-alkyl-2-O-acyl-sn-glycero-1-phosphocholine enantiomer, which is not susceptible to phospholipase A2 cleavage, gives 3-O-alkyl-sn-glycero-1-phosphocholine upon deacylation with methanolic sodium hydroxide. Homogeneity and structure of the intermediates and final products were ascertained by carbon-13 nuclear magnetic resonance spectroscopy on monomeric solutions.[Abstract] [Full Text] [Related] [New Search]