These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Characterization and in vitro evaluation of freeze-dried microparticles composed of granisetron-cyclodextrin complex and carboxymethylcellulose for intranasal delivery. Author: Cho HJ, Balakrishnan P, Shim WS, Chung SJ, Shim CK, Kim DD. Journal: Int J Pharm; 2010 Nov 15; 400(1-2):59-65. PubMed ID: 20801202. Abstract: The aim of this study was to prepare microparticles (MPs) of granisetron (GRN) in combination with hydroxypropyl-β-cyclodextrin (HP-β-CD) and sodium carboxymethylcellulose (CMC-Na) by the simple freeze-drying method for intranasal delivery. The composition of MPs was determined from the phase-solubility study of GRN in various CDs. Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD) analysis and differential scanning calorimetry (DSC) studies were performed to evaluate possible interactions between GRN and excipients. The results indicated the formation of inclusion complex between GRN and CD, and the conversion of drug into amorphous state. The in vitro release of GRN from MPs was determined in phosphate buffered saline (pH 6.4) at 37°C. Cytotoxicity of the MPs and in vitro permeation study were conducted by using primary human nasal epithelial (HNE) cells and their monolayer system cultured by air-liquid interface (ALI) method, respectively. The MPs showed significantly higher GRN release profile compared to pure GRN. Moreover, the prepared MPs showed significantly lower cytotoxicity and higher permeation profile than that of GRN powder (p<0.05). These results suggested that the MPs composed of GRN, HP-β-CD and CMC-Na represent a simple and new GRN intranasal delivery system as an alternative to the oral and intravenous administration of GRN.[Abstract] [Full Text] [Related] [New Search]