These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mapping particulate matter at the body weld department in an automobile assembly plant.
    Author: Liu S, Hammond SK.
    Journal: J Occup Environ Hyg; 2010 Oct; 7(10):593-604. PubMed ID: 20803369.
    Abstract:
    A respiratory health survey conducted in an assembly plant in 2000-2001 found that welders had elevated rates of self-reported respiratory symptoms compared with painters and assembly workers. Subsequently, the ventilation system was improved at the body weld department. In a follow-up study, particle spatial distributions were analyzed, following a mapping protocol developed specifically for this workplace, to evaluate the effectiveness of the changes. Significant temporal and spatial variations were observed. Temporal variation during a shift was monitored with over-shift stationary sampling at fixed locations. Spatial variation was evaluated with 1-min time-weighted average particle concentrations measured throughout the process areas (212 locations). The arithmetic spatial mean across 212 locations for the respirable particles varied from 305 microg/m(3) to 501 microg/m(3) on 6 sampled days, with a standard deviation of 71 microg/m(3), indicating that the difference between before and after countermeasures must be at least 191 microg/m(3) to be considered statistically significant at the given sample sizes. The available data were not sufficient to evaluate the reduction of the particle concentrations after the countermeasures. The map of particle mass concentration revealed several high concentration areas, requiring further investigation and potentially higher level of controls. Resistance welding needed to be effectively controlled, as it could be the major particle emitting sources in the facility. The map of submicrometer (0.014 microm to 1.0 microm) particle count concentration presented different patterns from that of respirable particle mass concentration, indicating that the submicrometer particles tended to be more evenly distributed over the process areas. Workers not in proximity to intensive welding operations might be exposed to fine particles at levels higher than had traditionally been thought. Mapping was demonstrated to be an effective method to assess particle spatial distributions. A well-designed sampling protocol is critical to achieving the specific aims of a mapping study.
    [Abstract] [Full Text] [Related] [New Search]