These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The autoimmune TCR-Ob.2F3 can bind to MBP85-99/HLA-DR2 having an unconventional mode as in TCR-Ob.1A12.
    Author: Kato Z, Stern JN, Nakamura HK, Miyashita N, Kuwata K, Kondo N, Strominger JL.
    Journal: Mol Immunol; 2010; 48(1-3):314-20. PubMed ID: 20810170.
    Abstract:
    The generation of T cell receptor (TCR) sequence diversity can produce 'forbidden' clones able to recognize self-antigens. Here, the structure of the complex between a myelin basic protein peptide (MBP85-99), human leukocyte antigen (HLA)-DR2 (DRB1*1501/DRA) and TCR-Ob.2F3, the dominant autoimmune clone obtained from a multiple sclerosis (MS) patient, has been determined using structural docking simulation and dynamics in silico and compared to the structure of TCR-Ob.1A12 complexes with the same MHC/peptide determined by X-ray crystallography. The two TCRs differ by three amino acids in the CDR3 α and β loops. As the result different hydrogen bonds are formed between the two CDR3β loops and the peptide in the complexes of the simulated structures, with three hydrogen bonds seen in the TCR-Ob.2F3 complex and five in the TCR-Ob.1A12 complex. The two TCRs, each located near the N-terminal end of the HLA-DR2 binding groove and both had an orthogonal binding axis but they deviated by about 10°. Simulation methods, such as structural docking and molecular dynamics as used here, provide an avenue to understand molecular binding mode efficiently and more rapidly than obtaining multiple crystal structures when a large structural database is already available.
    [Abstract] [Full Text] [Related] [New Search]