These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structural diversity in supramolecular complexes of MCl(3) (M = As, Sb, Bi) with constrained thio- and seleno-ether ligands.
    Author: Levason W, Maheshwari S, Ratnani R, Reid G, Webster M, Zhang W.
    Journal: Inorg Chem; 2010 Oct 04; 49(19):9036-48. PubMed ID: 20812749.
    Abstract:
    MCl(3) react with o-C(6)H(4)(EMe)(2) (E = S, Se) or o-C(6)H(4)(CH(2)ER)(2) (E = S, R = Me or Et; E = Se, R = Me) in anhydrous CH(2)Cl(2) or MeCN to give the yellow (Bi) or white (Sb) complexes, [MCl(3){o-C(6)H(4)(EMe)(2)}], [(MCl(3))(2){o-C(6)H(4)(CH(2)SMe)(2)}(3)], [MCl(3){o-C(6)H(4)(CH(2)SEt)(2)}], and [(BiCl(3))(4){o-C(6)H(4)(CH(2)SeMe)(2)}(3)], which were characterized by IR/Raman, (1)H NMR spectroscopy, and microanalysis. The corresponding reactions with AsCl(3) gave oils. Using the tetrachalcogenoethers, 1,2,4,5-C(6)H(2)(CH(2)EMe)(4) (E = S or Se), gave [(MCl(3))(2){1,2,4,5-C(6)H(2)(CH(2)EMe)(4)}] (E = S: M = As, Sb or Bi; E = Se: M = As) as powdered solids. The structures adopted are extremely diverse within this related series. Crystal structure determinations show infinite chains for [MCl(3){o-C(6)H(4)(EMe)(2)}] (M = Bi, E = S or Se; M = Sb, E = S), although the structures differ significantly in detail. [BiCl(3){o-C(6)H(4)(SMe)(2)}] is formed through chains of orthogonal μ-Bi(2)Cl(2) units linked together, with one dithioether ligand chelating per Bi atom, and seven-coordinate Bi; [SbCl(3){o-C(6)H(4)(SMe)(2)}] comprises weakly associated Sb(2)Cl(6) dimer units linked into chains by weakly bridging dithioethers, where both available lone pairs on each S atom are used. [BiCl(3){o-C(6)H(4)(SeMe)(2)}] comprises distorted square pyramidal units involving pyramidal BiCl(3) primary coordination and a weakly chelating diselenoether ligand, and assembled into infinite chains through long bridging Bi···Cl interactions via all three Cl's. The 2:3 M:L complexes [(MCl(3))(2){o-C(6)H(4)(CH(2)SMe)(2)}(3)] (M = Bi or Sb) are isostructural, and also show one-dimensional polymers, but this time the coordination is based upon pyramidal MCl(3) units, with secondary bonding via three long M···S contacts from bridging dithioethers, and a further long M···Cl bridge which completes a distorted seven-coordinate environment at M. The Et-substituted thioether analogue gives the 1:1 [MCl(3){o-C(6)H(4)(CH(2)SEt)(2)}] for both Bi and Sb; the former showing a chain polymer structure based upon seven-coordinate Bi and bridging dithioethers and the latter a weakly Cl-bridged dimer with distorted octahedral coordination at Sb, with a chelating dithioether. The 4:3 [(BiCl(3))(4){o-C(6)H(4)(CH(2)SeMe)(2)}(3)] complexes are based upon a central BiCl(6) octahedron linked to each of the other three Bi atoms via two bridging Cl atoms; the outer Bi atoms are also bonded to two mutually trans Se donor atoms from distinct diselenoethers, and two terminal Cl atoms, giving a distorted octahedral coordination environment at Bi. One of the two crystallographically independent tetrabismuth units is discrete, while the other shows further Cl-bridges to adjacent units giving an infinite network. [(AsCl(3))(2){1,2,4,5-C(6)H(2)(CH(2)SMe)(4)}] also forms an infinite network based upon square pyramidal As(III), and comprises pyramidal AsCl(3) units each weakly coordinated to two (mutually cis) S-donor atoms from two different thioether ligands. The Sb-analogue is structurally very similar; however, in this case a solvent MeCN occupies the sixth coordination site. Finally, [(AsCl(3))(2){1,2,4,5-C(6)H(2)(CH(2)SeMe)(4)}] forms an infinite chain based upon distorted octahedral coordination at As through three terminal (pyramidal) Cl atoms, two Se atoms from κ(2)-μ(2)-selenoethers, although unexpectedly the chelation is through Se atoms that are mutually meta on the aromatic ring; with one Se atom on each ligand using both of its lone pairs to bridge (weakly) between two As atoms. These MCl(3)-chalcogenoether adducts are mostly weakly associated, and lead to very diverse structures which result from a combination of intra- and intermolecular interactions and crystal packing.
    [Abstract] [Full Text] [Related] [New Search]