These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of hyperoxygenation on tissue pO2 and its effect on radiotherapeutic efficacy of orthotopic F98 gliomas.
    Author: Khan N, Mupparaju S, Hekmatyar SK, Hou H, Lariviere JP, Demidenko E, Gladstone DJ, Kauppinen RA, Swartz HM.
    Journal: Int J Radiat Oncol Biol Phys; 2010 Nov 15; 78(4):1193-200. PubMed ID: 20813466.
    Abstract:
    PURPOSE: Lack of methods for repeated assessment of tumor pO(2) limits the ability to test and optimize hypoxia-modifying procedures being developed for clinical applications. We report repeated measurements of orthotopic F98 tumor pO(2) and relate this to the effect of carbogen inhalation on tumor growth when combined with hypofractionated radiotherapy. METHODS AND MATERIALS: Electron paramagnetic resonance (EPR) oximetry was used for repeated measurements of tumor and contralateral brain pO(2) in rats during 30% O(2) and carbogen inhalation for 5 consecutive days. The T(1)-enhanced volumes and diffusion coefficients of the tumors were assessed by magnetic resonance imaging (MRI). The tumors were irradiated with 9.3 Gy x 4 fractions in rats breathing 30% O(2) or carbogen to determine the effect on tumor growth. RESULTS: The pretreatment F98 tumor pO(2) varied between 8 and 16 mmHg, while the contralateral brain had 41 to 45 mmHg pO(2) during repeated measurements. Carbogen breathing led to a significant increase in tumor and contralateral brain pO(2); however, this effect declined over days. Irradiation of the tumors in rats breathing carbogen resulted in a significant decrease in tumor growth and an increase in the diffusion coefficient measured by MRI. CONCLUSIONS: The results provide quantitative measurements of the effect of carbogen inhalation on intracerebral tumor pO(2) and its effect on therapeutic outcome. Such direct repeated pO(2) measurements by EPR oximetry can provide temporal information that could be used to improve therapeutic outcome by scheduling doses at times of improved tumor oxygenation. EPR oximetry is currently being tested for clinical applications.
    [Abstract] [Full Text] [Related] [New Search]