These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tyr-167/Trp-168 in type 1/3 inositol 1,4,5-trisphosphate receptor mediates functional coupling between ligand binding and channel opening.
    Author: Yamazaki H, Chan J, Ikura M, Michikawa T, Mikoshiba K.
    Journal: J Biol Chem; 2010 Nov 12; 285(46):36081-91. PubMed ID: 20813840.
    Abstract:
    The N-terminal ∼220-amino acid region of the inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)/Ca(2+) release channel has been referred to as the suppressor/coupling domain because it is required for both IP(3) binding suppression and IP(3)-induced channel gating. Measurements of IP(3)-induced Ca(2+) fluxes of mutagenized mouse type 1 IP(3)R (IP(3)R1) showed that the residues responsible for IP(3) binding suppression in this domain were not essential for channel opening. On the other hand, a single amino acid substitution of Tyr-167 to alanine completely impaired IP(3)-induced Ca(2+) release without reducing the IP(3) binding activity. The corresponding residue in type 3 IP(3)R (IP(3)R3), Trp-168, was also critical for channel opening. Limited trypsin digestion experiments showed that the trypsin sensitivities of the C-terminal gatekeeper domain differed markedly between the wild-type channel and the Tyr-167 mutant under the optimal conditions for channel opening. These results strongly suggest that the Tyr/Trp residue (Tyr-167 in IP(3)R1 and Trp-168 in IP(3)R3) is critical for the functional coupling between IP(3) binding and channel gating by maintaining the structural integrity of the C-terminal gatekeeper domain at least under activation gating.
    [Abstract] [Full Text] [Related] [New Search]