These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A novel analytical method to evaluate directly catalase activity of microorganisms and mammalian cells by ESR oximetry. Author: Nakamura K, Kanno T, Mokudai T, Iwasawa A, Niwano Y, Kohno M. Journal: Free Radic Res; 2010 Sep; 44(9):1036-43. PubMed ID: 20815766. Abstract: Electron spin resonance (ESR) oximetry technique was applied for analysis of catalase activity in the present study. Catalase activity was evaluated by measuring oxygen from the reaction between hydrogen peroxide (H(2)O(2)) and catalase-positive cells. It was demonstrated that the ESR spectra of spin-label probes, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO) and 4-maleimido-2,2,6,6-tetramethyl-1-piperidinyloxy (4-maleimido-TEMPO) in the presence of H(2)O(2) were broadened with the concentrations of catalase. It was possible to make a calibration curve for catalase activity by peak widths of the spectra of each spin-label probe, which are broadened dependently on catalase concentrations. The broadened ESR spectra were also observed when the catalase-positive micro-organisms or the mammalian cells originally from circulating monocytes/macrophages were mixed with TEMPOL and H(2)O(2). Meanwhile, catalase-negative micro-organisms caused no broadening change of ESR spectra. The present study indicates that it is possible to evaluate directly the catalase activity of various micro-organisms and mammalian cells by using an ESR oximetry technique.[Abstract] [Full Text] [Related] [New Search]