These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The endocrine disrupting potential of sediments from the Upper Danube River (Germany) as revealed by in vitro bioassays and chemical analysis. Author: Grund S, Higley E, Schönenberger R, Suter MJ, Giesy JP, Braunbeck T, Hecker M, Hollert H. Journal: Environ Sci Pollut Res Int; 2011 Mar; 18(3):446-60. PubMed ID: 20820928. Abstract: INTRODUCTION: The present study was part of a comprehensive weight-of-evidence approach with the goal of identifying potential causes for the declines in fish populations, which have been observed during the past decades in the Upper Danube River. METHODS: The specific goal was the investigation of the endocrine disrupting potential of sediment extracts from different sites along the Danube River. Parallel to the identification and quantification of target estrogens, two in vitro bioassays were employed to assess the estrogenic potential (yeast estrogen screen, YES) of the sediment samples and to evaluate their effects on the production of testosterone (T) and E2 (H295R Steroidogenesis Assay). Using a potency balance approach, the contribution of the measured compounds (Chem-EEQs) to the total endocrine activity measured by the YES (YES-EEQs) was calculated. RESULTS AND DISCUSSION: Of the nine sediment extracts tested five extracts exhibited significant estrogenic activities in the YES, which suggested the presence of ER agonists in these samples. The xenoestrogens nonylphenol (NP) and bisphenol A (BPA) and the natural estrogen estrone (E1) were detected while concentrations of 17β-estradiol (E2) and ethinylestradiol (EE2) were less than their respective limits of quantification in all sediment extracts. A comparison of the measured YES-EEQs and the calculated Chem-EEQs revealed that as much as 6% of estrogenic activity in extracts of most sediments could be explained by two xeno- and one natural estrogen. Exposure of H295R cells to sediment extracts from four different locations in the Danube River resulted in significantly increased concentrations of E2, but only slight inhibition of T synthesis. Furthermore, application of the H295R Steroidogenesis Assay provided evidence for endocrine disrupting potencies in sediment samples from the Upper Danube River, some of which were not detectable with the YES. In conclusion, differential endocrine activities were associated with several sediments from the Upper Danube River. Further investigations will have to show whether the observed activities are of biological relevance with regard to declines in fish populations in the Upper Danube River.[Abstract] [Full Text] [Related] [New Search]