These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Post-traumatic hypoxia exacerbates brain tissue damage: analysis of axonal injury and glial responses.
    Author: Hellewell SC, Yan EB, Agyapomaa DA, Bye N, Morganti-Kossmann MC.
    Journal: J Neurotrauma; 2010 Nov; 27(11):1997-2010. PubMed ID: 20822466.
    Abstract:
    Traumatic brain injury (TBI) resulting in poor neurological outcome is predominantly associated with diffuse brain damage and secondary hypoxic insults. Post-traumatic hypoxia is known to exacerbate primary brain injury; however, the underlying pathological mechanisms require further elucidation. Using a rat model of diffuse traumatic axonal injury (TAI) followed by a post-traumatic hypoxic insult, we characterized axonal pathology, macrophage/microglia accumulation, and astrocyte responses over 14 days. Rats underwent TAI alone, TAI followed by 30 min of hypoxia (TAI + Hx), hypoxia alone, or sham-operation (n = 6/group). Systemic hypoxia was induced by ventilating rats with 12% oxygen in nitrogen, resulting in a ∼ 50% reduction in arterial blood oxygen saturation. Brains were assessed for axonal damage, macrophage/microglia accumulation, and astrocyte activation at 1, 7, and 14 days post-treatment. Immunohistochemistry with axonal damage markers (β-amyloid precursor protein [β-APP] and neurofilament) showed strong positive staining in TAI + Hx rats, which was most prominent in the corpus callosum (retraction bulbs 69.8 ± 18.67; swollen axons 14.2 ± 5.25), and brainstem (retraction bulbs 294 ± 118.3; swollen axons 50.3 ± 20.45) at 1 day post-injury. Extensive microglia/macrophage accumulation detected with the CD68 antibody was maximal at 14 days post-injury in the corpus callosum (macrophages 157.5 ± 55.48; microglia 72.71 ± 20.75), and coincided with regions of axonal damage. Astrocytosis assessed with glial fibrillary acidic protein (GFAP) antibody was also abundant in the corpus callosum and maximal at 14 days, with a trend toward an increase in TAI + Hx animals (18.99 ± 2.45 versus 13.56 ± 0.81; p = 0.0617). This study demonstrates for the first time that a hypoxic insult following TAI perpetuates axonal pathology and cellular inflammation, which may account for the poor neurological outcomes seen in TBI patients who experience post-traumatic hypoxia.
    [Abstract] [Full Text] [Related] [New Search]