These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Primary rat hepatocyte culture on 3D nanofibrous polymer scaffolds for toxicology and pharmaceutical research.
    Author: Bierwolf J, Lutgehetmann M, Feng K, Erbes J, Deichmann S, Toronyi E, Stieglitz C, Nashan B, Ma PX, Pollok JM.
    Journal: Biotechnol Bioeng; 2011 Jan; 108(1):141-50. PubMed ID: 20824672.
    Abstract:
    Primary rat hepatocytes are a widely used experimental model to estimate drug metabolism and toxicity. In currently used two-dimensional (2D) cell culture systems, typical problems like morphological changes and the loss of liver cell-specific functions occur. We hypothesize that the use of polymer scaffolds could overcome these problems and support the establishment of three-dimensional (3D) culture systems in pharmaceutical research. Isolated primary rat hepatocytes were cultured on collagen-coated nanofibrous scaffolds for 7 days. Cell loading efficiency was quantified via DNA content measurement. Cell viability and presence of liver-cell-specific functions (albumin secretion, glycogen storage capacity) were evaluated. The activity of liver-specific factors was analyzed by immunofluorescent staining. RNA was isolated to establish quantitative real-time PCR. Our results indicate that primary rat hepatocytes cultured on nanofibrous scaffolds revealed high viability and well-preserved glycogen storage. Albumin secretion was existent during the entire culture period. Hepatocytes remain HNF-4 positive, indicating highly preserved cell differentiation. Aggregated hepatocytes re-established positive signaling for Connexin 32, a marker for differentiated hepatocyte interaction. ZO-1-positive hepatocytes were detected indicating formation of tight junctions. Expression of cytochrome isoenzymes was inducible. Altogether the data suggest that nanofibrous scaffolds provide a good in vitro microenvironment for neo tissue regeneration of primary rat hepatocytes.
    [Abstract] [Full Text] [Related] [New Search]