These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Macromolecular knot in good and poor solvents: a Monte Carlo simulation.
    Author: Sun HQ, Zhang L, Liao Q.
    Journal: J Phys Chem B; 2010 Sep 30; 114(38):12293-7. PubMed ID: 20825151.
    Abstract:
    The probability and dimension of the simple macromolecular knots over a wide range of temperatures corresponding from good to poor solvents are investigated by Monte Carlo simulation. Macromolecular knots are modeled as rings of self-avoiding walks on a simple cubic lattice with the nearest neighbor attractions. We found that there is a minimum probability for the unknotted ring at a certain temperature. The size dependence of trivial, trefoil, and figure-eight knots on chain lengths and temperatures is presented. The simulation results for the size dependence on the knot's complication in different solvents are in good qualitative agreement with prediction of the scaling model proposed by Grosberg et al. The critical exponent for long chain is independent of the knot types based on the simulation results, although the mean square radius of gyration is influenced significantly by the knot types for a shorter length macromolecular ring. We calculated the ratio of the topological invariant p of trefoil knot and figure-eight knot and found that the ratio is approaching to 1.3 with the increasing of the chain length.
    [Abstract] [Full Text] [Related] [New Search]