These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of loganin, iridoid glycoside from Corni Fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. Author: Yamabe N, Noh JS, Park CH, Kang KS, Shibahara N, Tanaka T, Yokozawa T. Journal: Eur J Pharmacol; 2010 Dec 01; 648(1-3):179-87. PubMed ID: 20826139. Abstract: Previously, we have reported that Corni Fructus possessed hypoglycemic and hypocholesterolemic effects in streptozotocin-induced type 1 diabetic rats and diet-induced hypercholesterolemic rats. Herein, we have focused on the effect and mechanism of loganin, a major iridoid glycoside of Corni Fructus, on the type 2 diabetic db/db mice. Loganin was orally administered to db/db mice at a dose of 20 or 100 mg/kg body weight daily for 8 weeks. The biochemical factors and expressions of protein and mRNA related to lipid metabolism, inflammation, advanced glycation endproducts, and its receptor were measured. In loganin-treated db/db mice, hyperglycemia and dyslipidemia were ameliorated in both the serum and hepatic tissue; however, in the kidney, only triglyceride was reduced. The enhanced oxidative stress was alleviated by loganin through a decrease in thiobarbituric acid-reactive substances (liver and kidney) and reactive oxygen species (serum, liver, and kidney), as well as augmentation of the oxidized to reduced glutathione ratio (liver and kidney). The marked lipid-regulatory effect of loganin was exerted in the liver of type 2 diabetic mice via suppressing mRNA expressions related to lipid synthesis and adjusting the abnormal expression of peroxisome proliferator-activated receptor α and sterol regulatory-element binding protein in the nucleus. Furthermore, loganin inhibited advanced glycation endproduct formation and the expression of its receptor, and nuclear factor-kappa B-induced inflammation in the hepatic tissue of db/db mice. Loganin exhibits protective effects against hepatic injury and other diabetic complications associated with abnormal metabolic states and inflammation caused by oxidative stress and advanced glycation endproduct formation.[Abstract] [Full Text] [Related] [New Search]