These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Replacement of an oxo by an imido group in oxotransferase model compounds: influence on the oxygen atom transfer. Author: Mösch-Zanetti NC, Wurm D, Volpe M, Lyashenko G, Harum B, Belaj F, Baumgartner J. Journal: Inorg Chem; 2010 Oct 04; 49(19):8914-21. PubMed ID: 20831259. Abstract: Treatment of [MoO(N-t-Bu)Cl(2)(dme)] (dme = dimethoxyethane) with 2 equiv of the potassium salts of Schiff base ligands of the type KArNC(CH(3))CHC(CH(3))O afforded oxo imido molybdenum(VI) compounds [MoO(N-t-Bu)L(2)] {1, with Ar = phenyl (L(Ph)), 2 with Ar = 2-tolyl (L(MePh)), 3 with Ar = 2,6-dimethylphenyl (L(Me2Ph)) and 4 with Ar = 2,6-diisopropylphenyl (L(iPr2Ph))}. We have also prepared related bisimido complexes [Mo(N-t-Bu)(2)L(2) (5 with L = L(Ph), 6 with L = L(MePh), and 7 with L = L(Me2Ph)) by treatment of [Mo(N-t-Bu)(2)Cl(2)(dme)] with 2 equiv of the potassium salt of the respective ligand. 1, 3, 5, and 6 were characterized via single crystal X-ray diffraction. The oxo imido complexes exhibit oxygen atom transfer (OAT) reactivity toward trimethyl phosphine. Kinetic data were obtained for 1 and 3 by UV/vis spectroscopy revealing decreased OAT reactivity in comparison to related dioxo complexes with the same Schiff base ligands and decreased reactivity of 1 versus 3. Cyclic voltammetry was used to probe the electronic situation at the molybdenum center showing reversible reduction waves for 3 and [MoO(2)(L(Me2Ph))(2)] at comparable potentials while 1 exhibits a significant lower potential. Density functional theory (DFT) calculations showed a higher electron density on oxygen in the oxo imido complexes.[Abstract] [Full Text] [Related] [New Search]