These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition.
    Author: Schellenberg B, Ramel C, Dudler R.
    Journal: Mol Plant Microbe Interact; 2010 Oct; 23(10):1287-93. PubMed ID: 20831408.
    Abstract:
    The peptide derivative syringolin A, a product of a mixed nonribosomal peptide and polyketide synthetase, is secreted by certain strains of the phytopathogenic bacterium Pseudomonas syringae pv. syringae. Syringolin A was shown to be a virulence factor for P. syringae pv. syringae B728a because disease symptoms on its host Phaseolus vulgaris (bean) were greatly reduced upon inoculation with syringolin A-negative mutants. Syringolin A's mode of action was recently shown to be irreversible proteasome inhibition. Here, we report that syringolin A-producing bacteria are able to open stomata and, thus, counteract stomatal innate immunity in bean and Arabidopsis. Syringolin A-negative mutants, which induce stomatal closure, can be complemented by exogenous addition of not only syringolin A but also MG132, a well-characterized and structurally unrelated proteasome inhibitor. This demonstrates that proteasome activity is crucial for guard cell function. In Arabidopsis, stomatal immunity was salicylic acid (SA)-dependent and required NPR1, a key regulator of the SA-dependent defense pathway whose proteasome-dependent turnover has been reported to be essential for its function. Thus, elimination of NPR1 turnover through proteasome inhibition by syringolin A is an attractive hypothesis to explain the observed inhibition of stomatal immunity by syringolin A.
    [Abstract] [Full Text] [Related] [New Search]