These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity. Author: Gu J, Lee CW, Fan Y, Komlos D, Tang X, Sun C, Yu K, Hartzell HC, Chen G, Bamburg JR, Zheng JQ. Journal: Nat Neurosci; 2010 Oct; 13(10):1208-15. PubMed ID: 20835250. Abstract: Dendritic spines undergo actin-based growth and shrinkage during synaptic plasticity, in which the actin depolymerizing factor (ADF)/cofilin family of actin-associated proteins are important. Elevated ADF/cofilin activities often lead to reduced spine size and immature spine morphology but can also enhance synaptic potentiation in some cases. Thus, ADF/cofilin may have distinct effects on postsynaptic structure and function. We found that ADF/cofilin-mediated actin dynamics regulated AMPA receptor (AMPAR) trafficking during synaptic potentiation, which was distinct from actin's structural role in spine morphology. Specifically, elevated ADF/cofilin activity markedly enhanced surface addition of AMPARs after chemically induced long-term potentiation (LTP), whereas inhibition of ADF/cofilin abolished AMPAR addition. We found that chemically induced LTP elicited a temporal sequence of ADF/cofilin dephosphorylation and phosphorylation that underlies AMPAR trafficking and spine enlargement. These findings suggest that temporally regulated ADF/cofilin activities function in postsynaptic modifications of receptor number and spine size during synaptic plasticity.[Abstract] [Full Text] [Related] [New Search]