These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Indium flux-growth of Eu2AuGe3: a new germanide with an AlB2 superstructure.
    Author: Sebastian CP, Malliakas CD, Chondroudi M, Schellenberg I, Rayaprol S, Hoffmann RD, Pöttgen R, Kanatzidis MG.
    Journal: Inorg Chem; 2010 Oct 18; 49(20):9574-80. PubMed ID: 20836517.
    Abstract:
    The germanide Eu(2)AuGe(3) was obtained as large single crystals in high yield from a reaction of the elements in liquid indium. At room temperature Eu(2)AuGe(3) crystallizes with the Ca(2)AgSi(3) type, space group Fmmm, an ordered variant of the AlB(2) type: a = 857.7(4), b = 1485.5(10), c = 900.2(4) pm. The gold and germanium atoms build up slightly distorted graphite-like layers which consist of Ge(6) and Au(2)Ge(4) hexagons, leading to two different hexagonal-prismatic coordination environments for the europium atoms. Magnetic susceptibility data showed Curie-Weiss law behavior above 50 K and antiferromagnetic ordering at 11 K. The experimentally measured magnetic moment indicates divalent europium. The compound exhibits a distinct magnetic anisotropy based on single crystal measurements and at 5 K it shows a metamagnetic transition at ∼10 kOe. Electrical conductivity measurements show metallic behavior. The structural transition at 130 K observed in the single crystal data was very well supported by the conductivity measurements. (151)Eu Mössbauer spectroscopic data show an isomer shift of -11.24 mm/s at 77 K, supporting the divalent character of europium. In the magnetically ordered regime one observes superposition of two signals with hyperfine fields of 26.0 (89%) and 3.5 (11%) T, respectively, indicating differently ordered domains.
    [Abstract] [Full Text] [Related] [New Search]