These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment.
    Author: Bouhemad B, Brisson H, Le-Guen M, Arbelot C, Lu Q, Rouby JJ.
    Journal: Am J Respir Crit Care Med; 2011 Feb 01; 183(3):341-7. PubMed ID: 20851923.
    Abstract:
    RATIONALE: In the critically ill patients, lung ultrasound (LUS) is increasingly being used at the bedside for assessing alveolar-interstitial syndrome, lung consolidation, pneumonia, pneumothorax, and pleural effusion. It could be an easily repeatable noninvasive tool for assessing lung recruitment. OBJECTIVES: Our goal was to compare the pressure-volume (PV) curve method with LUS for assessing positive end-expiratory pressure (PEEP)-induced lung recruitment in patients with acute respiratory distress syndrome/acute lung injury (ARDS/ALI). METHODS: Thirty patients with ARDS and 10 patients with ALI were prospectively studied. PV curves and LUS were performed in PEEP 0 and PEEP 15 cm H₂O₂. PEEP-induced lung recruitment was measured using the PV curve method. MEASUREMENTS AND MAIN RESULTS: Four LUS entities were defined: consolidation; multiple, irregularly spaced B lines; multiple coalescent B lines; and normal aeration. For each of the 12 lung regions examined, PEEP-induced ultrasound changes were measured, and an ultrasound reaeration score was calculated. A highly significant correlation was found between PEEP-induced lung recruitment measured by PV curves and ultrasound reaeration score (Rho = 0.88; P < 0.0001). An ultrasound reaeration score of +8 or higher was associated with a PEEP-induced lung recruitment greater than 600 ml. An ultrasound lung reaeration score of +4 or less was associated with a PEEP-induced lung recruitment ranging from 75 to 450 ml. A statistically significant correlation was found between LUS reaeration score and PEEP-induced increase in Pa(O₂) (Rho = 0.63; P < 0.05). CONCLUSIONS: PEEP-induced lung recruitment can be adequately estimated with bedside LUS. Because LUS cannot assess PEEP-induced lung hyperinflation, it should not be the sole method for PEEP titration.
    [Abstract] [Full Text] [Related] [New Search]