These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The triplet state of fac-Ir(ppy)3.
    Author: Hofbeck T, Yersin H.
    Journal: Inorg Chem; 2010 Oct 18; 49(20):9290-9. PubMed ID: 20853860.
    Abstract:
    The emitting triplet state of fac-Ir(ppy)(3) (fac-tris(2-phenylpyridine)iridium) is studied for the first time on the basis of highly resolved optical spectra in the range of the electronic 0-0 transitions. For the compound dissolved in CH(2)Cl(2) and cooled to cryogenic temperatures, three 0-0 transitions corresponding to the triplet substates I, II, and III are identified. They lie at 19,693 cm(-1) (507.79 nm, I → 0), 19,712 cm(-1) (507.31 nm, II → 0), and 19,863 cm(-1) (503.45 nm, III → 0). From the large total zero-field splitting (ZFS) of 170 cm(-1), the assignment of the emitting triplet term as a (3)MLCT state (metal-to-ligand charge transfer state) is substantiated, and it is seen that spin-orbit couplings to higher lying (1,3)MLCT states are very effective. Moreover, the studies provide emission decay times for the three individual substates of τ(I) = 116 μs, τ(II) = 6.4 μs, and τ(III) = 200 ns. Further, group-theoretical considerations and investigations under application of high magnetic fields up to B = 12 T allow us to conclude that all three substates are nondegenerate and that the symmetry of the complex in the CH(2)Cl(2) matrix cage is lower than C(3). It follows that the triplet parent term is of (3)A character. Studies of the emission decay time and photoluminescence quantum yield, Φ(PL), of Ir(ppy)(3) in poly(methylmethacrylate) (PMMA) in the temperature range of 1.5 ≤ T ≤ 370 K reveal average and individual radiative and nonradiative decay rates and quantum yields of the substates. In the range 80 ≤ T ≤ 370 K, Φ(PL) is as high as almost 100%. The quantum yield Φ(PL) drops to ∼88% when cooled to T = 1.5 K. The investigations show further that the emission properties of Ir(ppy)(3) depend distinctly on the complex's environment or the matrix cage according to distinct changes of spin-orbit coupling effectiveness. These issues also have consequences for optimizations of the material's properties if applied as an organic light-emitting diode (OLED) emitter.
    [Abstract] [Full Text] [Related] [New Search]