These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [¹²⁵I]YP20: a novel radioligand specific for the extracellular domain of the CRF₁ receptor.
    Author: Gordon JC, Edwards P, Elmore CS, Lazor LA, Paschetto K, Bostwick R, Sylvester M, Mauger R, Scott C, Aharony D.
    Journal: Eur J Pharmacol; 2010 Dec 15; 649(1-3):59-63. PubMed ID: 20854803.
    Abstract:
    The peptide corticotropin-releasing factor (CRF) binds to the CRF₁ receptor via a two-domain mechanism such that the extracellular domain (ECD) of the receptor captures the CRF's C-terminus to facilitate the binding of CRF's N-terminus to the juxta-membrane or "J"-site. Known small molecule antagonists bind to the J-site while known CRF₁ receptor peptide radioligands bind to both sites. We report here the in vitro binding properties of the first radioligand that binds exclusively to the ECD of the CRF₁ receptor. This ligand, which we named [¹²⁵I]Yamada peptide 20 ([¹²⁵I]YP20), is a radiolabeled analog of a synthetic peptide first reported by Yamada et al. (2004). We confirmed its high affinity for the [¹²⁵I]CRF binding site on the hCRF₁ receptor and also found it to potently antagonize CRF-stimulated cAMP production in hCRF₁-CHO cells. Under optimized conditions, 20 pM [¹²⁵I]YP20 reproducibly bound to hCRF₁-CHO membranes with a pharmacology consistent with binding specific to the ECD of the CRF₁ receptor. Saturation binding studies revealed the presence of a high affinity site with an estimated K(d) of ≈0.9 nM. The kinetic association of 20 pM [¹²⁵I]YP20 binding best fit to a rapid component (t(1/2)=0.69 min) and a sluggish component (t(1/2)=42 min). [¹²⁵I]YP20's specific binding was rapidly reversible with dissociation kinetics also best described by two phases (t(1/2)=0.92 min and t(1/2)=11.7 min). While [¹²⁵I]YP20's binding kinetics are complex, its high affinity and pharmacological specificity indicate that it is an excellent radioligand for probing the ECD site of the CRF₁ receptor.
    [Abstract] [Full Text] [Related] [New Search]