These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ionizing radiation as a phytosanitary treatment against fruit flies (Diptera: Tephritidae): efficacy in naturally versus artificially infested fruit. Author: Hallman GJ, Thomas DB. Journal: J Econ Entomol; 2010 Aug; 103(4):1129-34. PubMed ID: 20857719. Abstract: Some phytosanitary irradiation treatment research against tephritid fruit flies (Diptera: Tephritidae) has used artificially infested fruit with the unstated and untested assumption that the method adequately simulated a natural situation. We compare grapefruit, Citrus paradisi Macfayden, naturally infested by Mexican fruit fly, Anastrepha ludens (Loew), via oviposition until larvae reached the late third instar versus insertion of diet-reared third instars into holes made in grapefruits 24 h before irradiation; the latter technique has been used in other studies. Both infestation techniques resulted in statistically indistinguishable results, indicating that insertion of diet-reared third instar Mexican fruit fly into holes bored into grapefruit and subsequently sealed 24 h before irradiation would adequately represent natural infestation and could be used to develop a radiation phytosanitary treatment of the insect in grapefruit when prevention of adult emergence is used as the measure of efficacy. Nevertheless, it may not be advisable to extend this conclusion to other fruit fly/fruit combinations without doing appropriate comparison studies. Dissection of puparia from nonirradiated control insects that failed to emerge as adults showed a relatively even distribution of mortality among the developmental stages within the puparium. In contrast, dissection of puparia from irradiated third instars that did not emerge as adults revealed a sharp attenuation in development from cryptocephalic to phanerocephalic pupae demonstrating this transition to be the developmental step most affected by radiation.[Abstract] [Full Text] [Related] [New Search]