These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exploring the neuroleptic substituent in octoclothepin: potential ligands for positron emission tomography with subnanomolar affinity for α(1)-adrenoceptors. Author: Kristensen JL, Püschl A, Jensen M, Risgaard R, Christoffersen CT, Bang-Andersen B, Balle T. Journal: J Med Chem; 2010 Oct 14; 53(19):7021-34. PubMed ID: 20857909. Abstract: A series of 1-(10,11-dihydrodibenzo[b,f]thiepin-10-yl)-4-methylpiperazine analogues substituted in the 8-position of the 10,11-dihydrodibenzo[b,f]thiepine scaffold with aryl, heteroaryl, amine, and amide substituents are described. The compounds were designed using the previously reported Liljefors-Bøgesø pharmacophore model for dopamine D(2) and α(1)-adrenoceptor antagonists, with the aim of obtaining selective α(1)-adrenoceptor antagonists suitable for development as radioligands for imaging of central α(1)-adrenoceptors by positron emission tomography. Sixteen aryl and heteroaryl substituted octoclothepin analogues were prepared by a convergent synthesis via coupling of 1-methyl-4-(8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10,11-dihydrodibenzo[b,f]thiepin-10-yl)piperazine with aryl and heteroaryl halides under palladium catalysis. The most selective compound obtained, (S)-N-((11-(4-methylpiperazin-1-yl)-10,11-dihydrodibenzo[b,f]thiepin-2-yl)methyl)isobutyramide (S)-35, showed a similar subnanomolar affinity compared to α(1a), α(1b), and α(1d)-adrenoceptors and a selectivity ratio of 20, 440, and 20 with respect to D(2), 5-HT(2C), and H(1) receptors, respectively.[Abstract] [Full Text] [Related] [New Search]