These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inactivation of rat liver microsomal steroid hydroxylations by 4-alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine: evidence for selectivity among steroid-inducible cytochrome P450IIIA forms.
    Author: Riddick DS, McGilvray I, Marks GS.
    Journal: Can J Physiol Pharmacol; 1990 Dec; 68(12):1533-41. PubMed ID: 2085799.
    Abstract:
    Various 4-alkyl analogues of 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6- trimethylpyridine (DDC) cause mechanism-based inactivation of cytochrome P-450 (P-450) via destruction of the heme prosthetic group. This is an important component of these compounds' porphyrinogenic mechanism. In an attempt to map the P-450 isozyme selectivities of DDC analogues, we have examined the effects of these compounds on the regioselective and stereoselective hydroxylation of androstenedione (AD) and progesterone (PG) in rat liver microsomal systems. In microsomes from phenobarbital-treated male rats, DDC analogues did not cause time-dependent inactivation of AD 7 alpha-hydroxylase, AD 16 beta-hydroxylase, and PG 21-hydroxylase, selective markers for P450IIA 1/2, IIB1, and IIC6, respectively. In contrast, DDC analogues were effective inactivators of PG 2 alpha-hydroxylase and steroid 6 beta-hydroxylases, selective markers for P450IIC11 and IIIA forms, respectively. We conclude that differences in porphyrinogenicity observed with various DDC analogues are not likely to be due to the selective destruction of different P-450 isozymes by different analogues, but rather to properties of the DDC analogues themselves. 4-Ethyl DDC was found to be capable of discriminating between P450IIIA subfamily forms. In microsomes from untreated male rats, which express P450IIIA2 but not IIIA1, 4-ethyl DDC inactivated both AD and PG 6 beta-hydroxylases. However, in microsomes from dexamethasone-treated female rats, which express P450IIIA1 but not IIIA2, no inactivation of the steroid 6 beta-hydroxylases was observed. Thus, 4-ethyl DDC appears to be a potentially valuable tool for differentiating between P450IIIA forms.
    [Abstract] [Full Text] [Related] [New Search]