These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A single amino acid change of translation termination factor eRF1 switches between bipotent and omnipotent stop-codon specificity. Author: Eliseev B, Kryuchkova P, Alkalaeva E, Frolova L. Journal: Nucleic Acids Res; 2011 Jan; 39(2):599-608. PubMed ID: 20860996. Abstract: In eukaryotes a single class-1 translation termination factor eRF1 decodes the three stop codons: UAA, UAG and UGA. Some ciliates, like Euplotes, have a variant code, and here eRF1s exhibit UAR-only specificity, whereas UGA is reassigned as a sense codon. Since eukaryote eRF1 stop-codon recognition is associated with its N-terminal domain, structural features should exist in the N domain of ciliate eRF1s that restrict their stop-codon specificity. Using an in vitro reconstituted eukaryotic translation system we demonstrate here that a chimeric eRF1 composed of the N domain of Euplotes aediculatus eRF1 fused to the MC domains of human eRF1 exhibits UAR-only specificity. Functional analysis of eRF1 chimeras constructed by swapping Euplotes N domain sequences with the cognate regions from human eRF1 as well as site-directed mutagenesis of human eRF1 highlighted the crucial role of the alanine residue in position 70 of E. aediculatus eRF1 in restricting UGA decoding. Switching the UAR-only specificity of E. aediculatus eRF1 to omnipotent mode is due to a single point mutation. Furthermore, we examined the influence of eRF3 on the ability of chimeric and mutant eRF1s to induce peptide release in response to different stop codons.[Abstract] [Full Text] [Related] [New Search]