These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Locomotion after spinal cord injury depends on constitutive activity in serotonin receptors. Author: Fouad K, Rank MM, Vavrek R, Murray KC, Sanelli L, Bennett DJ. Journal: J Neurophysiol; 2010 Dec; 104(6):2975-84. PubMed ID: 20861436. Abstract: Following spinal cord injury (SCI) neurons caudal to the injury are capable of rhythmic locomotor-related activity that can form the basis for substantial functional recovery of stepping despite the loss of crucial brain stem-derived neuromodulators like serotonin (5-HT). Here we investigated the contribution of constitutive 5-HT(2) receptor activity (activity in the absence of 5-HT) to locomotion after SCI. We used a staggered hemisection injury model in rats to study this because these rats showed a robust recovery of locomotor function and yet a loss of most descending axons. Immunolabeling for 5-HT showed little remaining 5-HT below the injury, and locomotor ability was not correlated with the amount of residual 5-HT. Furthermore, blocking 5-HT(2) receptors with an intrathecal (IT) application of the neutral antagonist SB242084 did not affect locomotion (locomotor score and kinematics were unaffected), further indicating that residual 5-HT below the injury did not contribute to generation of locomotion. As a positive control, we found that the same application of SB242084 completely antagonized the muscle activity induced by exogenous application of the 5-HT(2) receptor agonists alpha-methyl-5-HT (IT). In contrast, blocking constitutive 5-HT(2) receptor activity with the potent inverse agonist SB206553 (IT) severely impaired stepping as assessed with kinematic recordings, eliminating most hindlimb weight support and overall reducing the locomotor score in both hind legs. However, even in the most severely impaired animals, rhythmic sweeping movements of the hindlimb feet were still visible during forelimb locomotion, suggesting that SB206553 did not completely eliminate locomotor drive to the motoneurons or motoneuron excitability. The same application of SB206553 had no affect on stepping in normal rats. Thus while normal rats can compensate for loss of 5-HT(2) receptor activity, after severe spinal cord injury rats require constitutive activity in these 5-HT(2) receptors to produce locomotion.[Abstract] [Full Text] [Related] [New Search]