These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Skeletal height estimation from regression analysis of sternal lengths in a Northwest Indian population of Chandigarh region: a postmortem study. Author: Singh J, Pathak RK, Chavali KH. Journal: Forensic Sci Int; 2011 Mar 20; 206(1-3):211.e1-8. PubMed ID: 20869826. Abstract: Skeletal height estimation from regression analysis of eight sternal lengths in the subjects of Chandigarh zone of Northwest India is the topic of discussion in this study. Analysis of eight sternal lengths (length of manubrium, length of mesosternum, combined length of manubrium and mesosternum, total sternal length and first four intercostals lengths of mesosternum) measured from 252 male and 91 female sternums obtained at postmortems revealed that mean cadaver stature and sternal lengths were more in North Indians and males than the South Indians and females. Except intercostal lengths, all the sternal lengths were positively correlated with stature of the deceased in both sexes (P < 0.001). The multiple regression analysis of sternal lengths was found more useful than the linear regression for stature estimation. Using multivariate regression analysis, the combined length of manubrium and mesosternum in both sexes and the length of manubrium along with 2nd and 3rd intercostal lengths of mesosternum in males were selected as best estimators of stature. Nonetheless, the stature of males can be predicted with SEE of 6.66 (R(2) = 0.16, r = 0.318) from combination of MBL+BL_3+LM+BL_2, and in females from MBL only, it can be estimated with SEE of 6.65 (R(2) = 0.10, r = 0.318), whereas from the multiple regression analysis of pooled data, stature can be known with SEE of 6.97 (R(2) = 0.387, r = 575) from the combination of MBL+LM+BL_2+TSL+BL_3. The R(2) and F-ratio were found to be statistically significant for almost all the variables in both the sexes, except 4th intercostal length in males and 2nd to 4th intercostal lengths in females. The 'major' sternal lengths were more useful than the 'minor' ones for stature estimation The universal regression analysis used by Kanchan et al. [39] when applied to sternal lengths, gave satisfactory estimates of stature for males only but female stature was comparatively better estimated from simple linear regressions. But they are not proposed for the subjects of known sex, as they underestimate the male and overestimate female stature. However, intercostal lengths were found to be the poor estimators of stature (P < 0.05). And also sternal lengths exhibit weaker correlation coefficients and higher standard errors of estimate.[Abstract] [Full Text] [Related] [New Search]