These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Improvement of antibody immobilization using hyperbranched polymer and protein A. Author: Shen G, Cai C, Wang K, Lu J. Journal: Anal Biochem; 2011 Feb 01; 409(1):22-7. PubMed ID: 20869942. Abstract: For the construction of a well-defined antibody surface, protein A was used as a binding material to immobilize antibodies onto gold-derivatized transducers. The traditional method tends to assemble protein A directly onto the gold-derivatized transducers. In this paper, we tried to indirectly bind protein A onto sensors through hyperbranched polymer (HBP) which was synthesized from p-phenylenediamine and trimesic acid. The three-dimensional structure of HBP and the characteristics including orientation control and biocompatibility of protein A led to highly efficient immunoreactions and enhanced detection system performance. With this strategy, cysteamine monolayer was first assembled onto Au electrodes associated with the piezoelectric quartz crystal; secondly, the cysteamine-modified gold electrode was further modified by the activated HBP; thirdly, protein A was immobilized onto the HBP film; and finally, antibodies were immobilized onto the surface of protein A film for detecting the corresponding antigen. The quartz crystal microbalance immunosensor thus fabricated was applied to detect hepatitis B surface antigen in solutions that ranged from 0.71 to 300 μg mL(-1). The detection limit was estimated to be 0.53 μg mL(-1). The immunosensor holds good selectivity, sensitivity, and repeatability.[Abstract] [Full Text] [Related] [New Search]