These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Effects of cropping patterns on photosynthesis characteristics of summer maize and its utilization of solar and heat resources].
    Author: Zhu YG, Dong ST, Zhang JW, Liu P, Yang JS, Jia CL, Liu JG, Li DH.
    Journal: Ying Yong Sheng Tai Xue Bao; 2010 Jun; 21(6):1417-24. PubMed ID: 20873615.
    Abstract:
    In order to investigate the effects of interplanting and direct seeding on the photosynthesis characteristics of summer maize and its utilization of solar and heat resources, two summer maize cultivars (Zhengdan 958 and Denghai 661) were planted in the farmlands of Denghai Seed Co. Ltd in Laizhou City of Shandong Province, with 67500 plants x hm(-2) and three sowing dates. The above-ground biomass, plant growth rate, leaf area index, and net photosynthetic rate per ear leaf were measured to reveal the photosynthesis characteristics of test cultivars. In the meantime, the characters of grain-filling were simulated by Richards' model, and the solar resource utilization efficiency of the cultivars was calculated, in combining with meteorological data. Comparing with interplanting, direct seeding increased the grain yield by 1.17%-3.33%, but decreased the thousand-grain weight significantly. Growth stages were extended under earlier sowing. The leaf area index and net photosynthetic rate from flowering to 30 d after anthesis were significantly higher under direct seeding than under interplanting, but after then, they decreased faster. Direct seeding induced a higher accumulation of dry matter and a faster plant growth rate before and after flowering. Under direct seeding, the maximum grain-filling rate reached earlier, the starting potential was higher, but the grain-filling period, active grain-filling period, and W(max) were lower, compared with those under interplanting. Also under direct seeding, the total accumulative temperature and solar radiation during growth period decreased by 150-350 degrees C x d and 200-400 MJ x m(-2), respectively, but the solar resource utilization efficiency of grain increased by 10.5%-24.7%. All the results suggested that direct seeding was superior to interplanting for the summer maize production under field condition. In order to enhance solar and heat utilization efficiency and excavate yield potential, it would be essential to improve the leaf photosynthesis efficiency and postpone leaf aging.
    [Abstract] [Full Text] [Related] [New Search]