These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mapping quantitative trait Loci for resistance to rice blast. Author: Jia Y, Liu G. Journal: Phytopathology; 2011 Feb; 101(2):176-81. PubMed ID: 20879845. Abstract: Quantitative trait loci (QTLs) conferring resistance to rice blast, caused by Magnaporthe oryzae, have been under-explored. In the present study, composite interval mapping was used to identify the QTLs that condition resistance to the 6 out of the 12 common races (IB1, IB45, IB49, IB54, IC17, and ID1) of M. oryzae using a recombinant inbred line (RIL) population derived from a cross of the moderately susceptible japonica cultivar Lemont with the moderately resistant indica cultivar Jasmine 85. Disease reactions of 227 F(7) RILs were determined using a category scale of ratings from 0, representing the most resistant, to 5, representing the most susceptible. A total of nine QTLs responsive to different degrees of phenotypic variation ranging from 5.17 to 26.53% were mapped on chromosomes 3, 8, 9, 11, and 12: qBLAST3 at 1.9 centimorgans (cM) to simple sequence repeat (SSR) marker RM282 on chromosome 3 to IB45 accounting for 5.17%; qBLAST8.1 co-segregated with SSR marker RM1148 to IB49 accounting for 6.69%, qBLAST8.2 at 0.1 cM to SSR marker RM72 to IC17 on chromosome 8 accounting for 7.22%; qBLAST9.1 at 0.1 cM to SSR marker RM257 to IB54, qBLAST9.2 at 2.1 cM to SSR marker RM108, and qBLAST9.3 at 0.1 cM to SSR marker RM215 to IC17 on chromosome 9 accounting for 4.64, 7.62, and 4.49%; qBLAST11 at 2.2 cM to SSR marker RM244 to IB45 and IB54 on chromosome 11 accounting for 26.53 and 19.60%; qBLAST12.1 at 0.3 cM to SSR marker OSM89 to IB1 on chromosome 12 accounting for 5.44%; and qBLAST12.2 at 0.3 and 0.1 cM to SSR marker OSM89 to IB49 and ID1 on chromosome 12 accounting for 9.7 and 10.18% of phenotypic variation, respectively. This study demonstrates the usefulness of tagging blast QTLs using physiological races by composite interval mapping.[Abstract] [Full Text] [Related] [New Search]