These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inter-limb coordination, strength, jump, and sprint performances following a youth men's basketball game. Author: Cortis C, Tessitore A, Lupo C, Pesce C, Fossile E, Figura F, Capranica L. Journal: J Strength Cond Res; 2011 Jan; 25(1):135-42. PubMed ID: 20885333. Abstract: This study aimed to verify whether basketball players are able to maintain strength (handgrip), jump (countermovement jump [CMJ]), sprint (10 m and 10 m bouncing the ball [10 mBB]), and interlimb coordination (i.e., synchronized hand and foot flexions and extensions at 80, 120, and 180 bpm) performances at the end of their game. Ten young (age 15.7 ± 0.2 years) male basketball players volunteered for this study. During the friendly game, heart rate (HR), rate of perceived exertion (RPE), and rate of muscle pain (RMP) were assessed to evaluate the exercise intensity. Overall, players spent 80% of the time playing at intensities higher than 85% HRmax. Main effects (p < 0.05) for game periods emerged for HR and the number of players involved in a single action, with lower occurrence of maximal efforts and higher involvement of teammates after the first 2 periods. At the end of the game, players reported high (p < 0.05) RPE (15.7 ± 2.4) and RMP (5.2 ± 2.3) values; decreased (p < 0.05) sprint capabilities (10 m: pre = 1.79 ± 0.09 seconds, post = 1.84 ± 0.08 seconds; 10 mBB: pre = 1.81 ± 0.11 seconds, post = 1.96 ± 0.08 seconds); increased (p < 0.05) interlimb coordination at 180 bpm (pre = 33.3 ± 20.2 seconds, post = 43.9 ± 19.8 seconds); and maintained jump (pre = 35.2 ± 5.2 cm, post = 35.7 ± 5.2 cm), handgrip (pre = 437 ± 73 N, post = 427 ± 55 N), and coordinative performances at lower frequencies of executions (80 bpm: pre = 59.7 ± 1.3 seconds, post = 60.0 ± 0.0 seconds; 120 bpm: pre = 54.7 ± 12.3 seconds, post = 57.3 ± 6.7 seconds). These findings indicate that the heavy load of the game exerts beneficial effects on the efficiency of executive and attentive control functions involved in complex motor behaviors. Coaches should structure training sessions that couple intense physical exercises with complex coordination tasks to improve the attentional capabilities of the players.[Abstract] [Full Text] [Related] [New Search]