These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Source apportionment of indoor residential fine particulate matter using land use regression and constrained factor analysis.
    Author: Clougherty JE, Houseman EA, Levy JI.
    Journal: Indoor Air; 2011 Feb; 21(1):53-66. PubMed ID: 20887392.
    Abstract:
    UNLABELLED: Source contributions to urban fine particulate matter (PM(2.5) ) have been modelled using land use regression (LUR) and factor analysis (FA). However, people spend more time indoors, where these methods are less explored. We collected 3-4- day samples of nitrogen dioxide and PM(2.5) inside and outside of 43 homes in summer and winter, 2003-2005, in and around Boston, Massachusetts. Particle filters were analysed for black carbon and trace element concentrations using reflectometry, X-ray fluorescence (XRF), and high-resolution inductively coupled mass spectrometry (ICP-MS). We regressed indoor against outdoor concentrations modified by ventilation, isolating the indoor-attributable fraction, and then applied constrained FA to identify source factors in indoor concentrations and residuals. Finally, we developed LUR predictive models using GIS-based outdoor source indicators and questionnaire data on indoor sources. FA using concentrations and residuals reasonably separated outdoor (long-range transport/meteorology, fuel oil/diesel, road dust) from indoor sources (combustion, smoking, cleaning). Multivariate LUR regression models for factors from concentrations and indoor residuals showed limited predictive power, but corroborated some indoor and outdoor factor interpretations. Our approach to validating source interpretations using LUR methods provides direction for studies characterizing indoor and outdoor source contributions to indoor cocentrations. PRACTICAL IMPLICATIONS: By merging indoor-outdoor modeling, factor analysis, and LUR-style predictive regression modeling, we have added to previous source apportionment studies by attempting to corroborate factor interpretations. Our methods and results support the possibility that indoor exposures may be modeled for epidemiologic studies, provided adequate sample size and variability to identify indoor and outdoor source contributions. Using these techniques, epidemiologic studies can more clearly examine exposures to indoor sources and indoor penetration of source-specific components, reduce exposure misclassification, and improve the characterization of the relationship between particle constituents and health effects.
    [Abstract] [Full Text] [Related] [New Search]