These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: PNRC accumulates in the nucleolus by interaction with B23/nucleophosmin via its nucleolar localization sequence. Author: Wang Y, Chen B, Li Y, Zhou D, Chen S. Journal: Biochim Biophys Acta; 2011 Jan; 1813(1):109-19. PubMed ID: 20888865. Abstract: PNRC (proline-rich nuclear receptor coregulatory protein) was primarily identified as a coactivator of nuclear receptors (NRs) by our laboratory, which enhances NR-mediated transcription by RNA polymerase II. Recent study has shown that PNRC also stimulates RNA polymerase III-dependent transcription through interaction with the subunit RPC39 of RNA polymerase III. Here, we report that PNRC accumulates in the nucleolus and its depletion by small interfering RNA (siRNA) impairs pre-rRNA transcription by RNA polymerase I. We identified the sequence at position 94-101 ((94)PKKRRKKK(101)) of PNRC as its nucleolar localization sequence (NoLS). Fusion of this sequence to GFP directed GFP to the nucleolus. Characterization of the NoLS revealed that the stretches of six successive basic residues are sufficient to function as a NoLS. Through co-immunoprecipitation assay, we demonstrated that the NoLS is necessary and sufficient to mediate the association of PNRC with B23/nucleophosmin. Moreover, B23 depletion by siRNA disrupted the accumulation of PNRC in the nucleolus. Together, our study indicates that PNRC is a novel nucleolar protein that might be involved in regulation of pre-rRNA synthesis, and it localizes to the nucleolus by interaction with B23 via its NoLS. Our study also suggests that the stretches of six successive basic residues (lysine and/or arginine) could function as NoLS.[Abstract] [Full Text] [Related] [New Search]