These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Natural language morphology integration in off-line Arabic optical text recognition. Author: Kanoun S, Alimi AM, Lecourtier Y. Journal: IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):579-90. PubMed ID: 20889434. Abstract: In this paper, we propose a new linguistic-based approach called the affixal approach for Arabic word and text image recognition. Most of the existing works in the field integrate the knowledge of the Arabic language in the recognition process in two ways: either in post-recognition using the language of dictionary (dictionary of words) to validate the word hypotheses suggested by the OCR or in the course of the recognition process (recognition directed by a lexicon) using a statistical model of the language (Hidden Markov Model or N-gram). The proposed approach uses the linguistic concepts of the vocabulary to direct and simplify the recognition process. The principal contribution of the proposed approach is to be able to categorize the word hypotheses in words that are either derived or not derived from roots and to characterize morphologically each word hypothesis in order to prepare the text hypotheses for later analyses (for example, syntactic analysis; to filter the sentence hypotheses).[Abstract] [Full Text] [Related] [New Search]