These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glycogen synthase kinase-3beta: a prognostic marker and a potential therapeutic target in human bladder cancer.
    Author: Naito S, Bilim V, Yuuki K, Ugolkov A, Motoyama T, Nagaoka A, Kato T, Tomita Y.
    Journal: Clin Cancer Res; 2010 Nov 01; 16(21):5124-32. PubMed ID: 20889919.
    Abstract:
    PURPOSE: Although recent studies have shown glycogen synthase kinase-3β (GSK-3β), a serine/threonine kinase, as a positive regulator of pancreatic, colon, and kidney cancer cell survival and proliferation, the role of GSK-3 in bladder cancer remains unknown. Our objectives were to determine the subcellular localization of GSK-3β and to evaluate the effect of GSK-3 inhibition in bladder cancer. EXPERIMENTAL DESIGN: We used immunohistochemical staining and nuclear/cytosolic fractionation to determine the expression pattern of GSK-3β in human urothelial carcinomas. To study the effect of GSK-3 inhibition on bladder cancer cell proliferation and survival, we used pharmacologic inhibitors of GSK-3, RNA interference, MTS assay, bromodeoxyuridine incorporation assay, quantitative reverse transcriptase-PCR, and Western blotting. RESULTS: We found aberrant nuclear accumulation of GSK-3β in 62% (43 of 69) and 91% (21 of 23) of noninvasive and invasive human urothelial carcinomas, respectively. GSK-3β nuclear staining was significantly associated with high-grade tumors (P < 0.001), advanced stage of bladder cancer (P < 0.05), metastasis (P < 0.05), and worse cause-specific survival (P < 0.05) in bladder cancer patients. Moreover, we found that pharmacologic inhibition or genetic depletion of GSK-3β resulted in decreased viability of bladder cancer cells. CONCLUSIONS: Our results suggest nuclear accumulation of GSK-3β as a novel prognostic marker in bladder cancer, show that GSK-3 contributes to urothelial cancer cell proliferation and survival, and identify GSK-3 as a potential therapeutic target in human bladder cancer.
    [Abstract] [Full Text] [Related] [New Search]