These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Inhibition of phosphorylation of rat synaptosomal proteins by snake venom phospholipase A2 neurotoxins (beta-bungarotoxin, notexin) and enzymes (Naja naja atra, Naja nigricollis). Author: Ueno E, Rosenberg P. Journal: Toxicon; 1990; 28(12):1423-37. PubMed ID: 2089738. Abstract: Some snake venom neurotoxins, such as beta-bungarotoxin (beta-BuTX) and notexin, which inhibit the release of neurotransmitter at both peripheral and central presynaptic terminals possess phospholipase A2 activity. In contrast, most snake venom phospholipase A2 enzymes such as those isolated from Naja naja atra and Naja nigricollis are structurally homologous to these neutrotoxins but do not have any specific or potent presynaptic action although they have higher enzymatic activities than the neurotoxins. In order to investigate the mechanisms of presynaptic action of the snake venom neurotoxins, we studied their effects on phosphorylation of rat brain synaptosomal proteins. It is known that phosphorylation of synapsin I, a neuron specific and synaptic vesicle associated phosphoprotein, increases neurotransmitter release. Incubation of cerebral cortical synaptosomes with 32P-orthophosphate at 37 degrees C for 30 min, caused significant phosphorylation of a wide mol. wt range of proteins including most markedly those proteins in the mol. wt range (81,000-86,000) of synapsin I. Both snake venom phospholipase A2 neurotoxins and enzymes (5, 15 and 50 nM) inhibited phosphorylation in a Ca2(+)-dependent manner with the following order of potencies: beta-BuTX greater than N.n. atra phospholipase A2 greater than or equal to notexin greater than N. nigricollis phospholipase A2. Five nanomoles of beta-BuTX, which has the lowest phospholipase A2 activity, inhibited phosphorylation of a wide range of mol. wt proteins (51,000-188,000) by 42-58%. At the same concentration, N.n. atra phospholipase A2 (which possesses the highest enzymatic activity), notexin and N. nigricollis phospholipase A2 caused less inhibition than beta-BuTX, ranging from 0-40% depending on the agent used. These results indicate that there is no correlation between their potencies in inhibiting phosphorylation and the levels of their phospholipase A2 activities. An inhibitory activity on phosphorylation may be at least partially responsible for a presynaptically-induced block of neurotransmitter release.[Abstract] [Full Text] [Related] [New Search]