These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of hepatic cholesterol metabolism in humans: stimulatory effects of cholestyramine on HMG-CoA reductase activity and low density lipoprotein receptor expression in gallstone patients.
    Author: Reihnér E, Angelin B, Rudling M, Ewerth S, Björkhem I, Einarsson K.
    Journal: J Lipid Res; 1990 Dec; 31(12):2219-26. PubMed ID: 2090716.
    Abstract:
    To characterize the metabolic regulatory response to interruption of the enterohepatic circulation of bile acids, we examined the effects of cholestyramine treatment on the rate-limiting steps in cholesterol biosynthesis (HMG-CoA reductase) and bile acid production (cholesterol 7 alpha-hydroxylase) as well as on the heparin-sensitive binding of low density lipoproteins (LDL) (reflecting LDL receptor expression) in human liver. Altogether, 18 normolipidemic patients with uncomplicated cholesterol gallstone disease were treated with cholestyramine (8 g b.i.d.) for 2-3 weeks prior to cholecystectomy, and another 34 cholesterol gallstone patients served as untreated controls. Cholestyramine treatment stimulated cholesterol 7 alpha-hydroxylase more than sixfold, and increased both HMG-CoA reductase activity (552 +/- 60 pmol/min per mg protein vs 103 +/- 9 pmol/min per mg protein) and LDL receptor expression (6.1 +/- 0.8 ng/mg protein; n = 6 vs 2.2 +/- 0.3 ng/mg protein; n = 7). Moreover, there was a good correlation between HMG-CoA reductase activity and LDL receptor binding (rs = +0.71; n = 13), suggesting a simultaneous stimulatory effect to compensate for the increased hepatic cholesterol catabolism due to bile acid depletion caused by cholestyramine. Further evidence for this assumption was the finding of a significant relationship between cholesterol 7 alpha-hydroxylase activity and both LDL receptor expression (rs = +0.77; n = 13) and HMG-CoA reductase activity (rs = +0.76; n = 46). We conclude that in human liver a parallel stimulation of cholesterol synthesis and LDL receptor expression occurs in response to stimulation of bile acid synthesis.
    [Abstract] [Full Text] [Related] [New Search]