These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genetic feminization of the thoracic nervous system disrupts courtship song in male Drosophila melanogaster. Author: Rubinstein CD, Rivlin PK, Hoy RR. Journal: J Neurogenet; 2010 Dec; 24(4):234-45. PubMed ID: 20919857. Abstract: Despite the growing research investigating the sex-specific organization of courtship behavior in Drosophila melanogaster, much remains to be understood about the sex-specific organization of the motor circuit that drives this behavior. To investigate the sex-specification of a tightly patterned component of courtship behavior, courtship song, the authors used the GAL4/UAS targeted gene expression system to feminize the ventral ganglia in male Drosophila and analyzed the acoustic properties of courtship song. More specifically, the authors used the thoracic-specifying teashirt promoter (tsh(GAL4)) to express feminizing transgenes specifically in the ventral ganglia. When tsh(GAL4) drove expression of transformer (tra), males were unable to produce prolonged wing extensions. Transgenic expression of an RNAi construct directed against male-specific fruitless (fru(M)) transcripts resulted in normal wing extension, but highly defective courtship song, with 58% of males failing to generate detectable courtship song. Of those that did sing, widths of individual pulses were significantly broader than controls, suggesting thoracic fru(M) function serves to mediate proprioceptive-dependent wing vibration damping during pulse song. However, the most critical signal in the song, the interpulse interval, remained intact. The inability to phenocopy this effect by reducing fru(M) expression in motor neurons and proprioceptive neurons suggests thoracic interneurons require fru(M) for proper pulse song execution and patterning of pulse structure, but not for pulse timing. This provides evidence that genes establishing sex-specific activation of complex behaviors may also be used in establishing pattern-generating motor networks underlying these sex-specific behaviors.[Abstract] [Full Text] [Related] [New Search]